Types of Solids*	Intermolecular Force(s) Between Particles			
1. Metallic Crystals (Metals)	Metallic bonding: Valence electrons form mobile sea of			
Examples: Na, Cu, Fe, Mn	electrons which comprise the metallic bond.			
2. Ionic Crystals (Ionic Solids)	<i>Ionic Bonding</i> : Attraction of charged ions for one another.			
Examples: NaCl, MgCl ₂ , MgO	Lattice energy is a measure of ionic bond strength.			
3. Covalent Crystals (Network	<i>Network covalent bonding</i> . Network solids are extremely			
Solids)	hard compounds with very high melting and boiling points			
Examples (small class!): C(diamond),	due to their endless 3-dimensional network of covalent			
$SiC(s), SiO_2$ (quartz)	bonds.			
4. Molecular Crystals				
Examples:	One or more of the following:			
(a) Need H bonded to O, N or F: H_2O ,	(a) <i>Hydrogen bonding</i> : Hydrogen bonds are weaker than			
HF, NH ₃ .	covalent bonds, but stronger than (b) or (c) below.			
(b) C_6H_6 (benzene), polyethylene, I_2, F_2 ,	(b) <i>Dispersion forces</i> (induced dipole – induced dipole or			
and all the compounds from (a) above.	London dispersion forces): universal force of attraction			
	between instantaneous dipoles. These forces are weak for			
	small, low-molecular weight molecules, but large for			
	heavy, long, and/or highly <i>polarizable</i> molecules. They			
	usually dominate over (c) below.			
(c) CHF_3 , CH_3COCH_3 (acetone) and	(c) <i>Dipole-dipole forces</i> : these forces act between <i>polar</i>			
$H_2O, HF, NH_3.$	molecules. They are much weaker than hydrogen bonding.			
Note: Van der Waals Forces is a category which includes both categories (b) and (c) above				

Intermolecular Forces

Note:Van der Waals Forces is a category which includes both categories (b) and (c) above.5. Atomic CrystalsDispersion forces: See Section 4(b) above.Examples:He, Ne, Ar, Kr, Xe

*<u>Note</u>: Many of the compounds given as examples are *not* solids at room temperature. But if you cool them down to a low enough temperature, eventually they will become solids.

Physical properties depend on these forces. The stronger the forces between the particles,

(a) the *higher* the *melting point*.

(b) the <u>higher</u> the boiling point.

(c) the *lower* the *vapor pressure* (partial pressure of vapor in equilibrium with liquid or solid in a closed container at a fixed temperature).

(d) the *higher* the *viscosity* (resistance to flow).

(e) the *greater* the *surface tension* (resistance to an increase in surface area).

1. What <u>type of crystal</u> will each of the following substances form in its solid state? Choices to consider are <i>metallic</i> , <i>ionic</i> , <i>covalent</i> , or <i>molecular</i> crystals.								
(a) C_2H_6 (d) CO_2		(b) Na_2O (e) N_2O_5	(c) SiO ₂ (f) NaNO	3				
(g) Al		(h) C(diamono	(I) SO ₂					
2. Circle <u>all</u> the compounds in the following list <u>which would be expected to form intermolecular</u> <u>hydrogen bonds</u> in the liquid state: (a) CH ₂ OCH ₂ (b) CH ₄ (c) HF (d) CH ₂ CO ₂ H (e) Br ₂ (f) CH ₂ OH								
(dimethyl ether)	$(0) \operatorname{CH}_4$		(acetic acid)	(\mathbf{C}) \mathbf{BI}_2	(methanol)			

3. Specify the *predominant intermolecular force* involved for each substance in the space immediately following the substance. *Then in the last column, indicate which member of the pair vou would expect to have the higher boiling point.*

	Predominant		Predominant	Substance with Higher
Substance #1	Intermolecular Force	Substance #2	Intermolecular Force	Boiling Point
(a) HCl(g)		I_2		
(b) CH ₃ F		CH ₃ OH		
(c) H_2O		H_2S		
(d) SiO ₂		SO_2		
(e) Fe		Kr		
(f) CH ₃ OH		CuO		
(g) NH ₃		CH_4		
(h) HCl(g)		NaCl		
(i) SiC		Cu		

Answers:

1. (a) molecular; (b) ionic; (c) covalent (network solid); (d) molecular; (e) molecular; (f) ionic;

(g) metallic; (h) covalent (network solid); (i) molecular.

2. <u>Hint</u>: Molecule must contain <u>H bonded to O, N, or F</u>, since only H bonded to O, N, or F can form a hydrogen bond with an O, N, or F on another molecule. Thus (c), (d), and (f) should be circled.

3. Hint: Choices for the predominant intermolecular force are metallic bonding, ionic bonding, network covalent

bonding, *hydrogen bonding*, and *dispersion forces (induced dipole – induced dipole forces)*. Dipole-dipole forces are generally dominated by dispersion forces and are rarely predominant.

(a) dispersion forces; dispersion forces; I₂.

(b) dispersion forces; hydrogen bonding; CH₃OH.

(c) hydrogen bonding; dispersion forces; H₂O.

(d) network covalent bonding; dispersion forces; SiO_2 .

(e) metallic bonding; dispersion forces; Fe.

(f) hydrogen bonding; ionic bonding; CuO.

(g) hydrogen bonding dispersion forces; NH₃.

(h) dispersion forces; ionic bonding; NaCl.

(i) network covalent bonding; metallic bonding; SiC.