

FOLDABLES Brainstorm other roles that biologists fulfill in addition to those discussed in Section 1.1. List these roles on the back of your Foldable and give examples.

Vocabulary

Key Concepts

Section 1.1 Introduction to Biology

- · adaptation (p. 10)
- biology (p. 4)
- development (p. 9)
- growth (p. 9)
- homeostasis (p. 10)
- · organism (p. 6)
- · organization (p. 8)
- · reproduction (p. 9)
- response (p. 9)
- species (p. 9)
- stimulus (p. 9)

MAIN (Idea All living things share the characteristics of life.

- · Biology is the study of life.
- · Biologists study the structure and function of living things, their history, their interactions with the environment, and many other aspects of life.
- · All organisms have one or more cells, display organization, grow and develop, reproduce, respond to stimuli, use energy, maintain homeostasis, and have adaptations that evolve over time.

Section 1.2 The Nature of Science

- ethics (p. 15)
- · forensics (p. 15)
- · metric system (p. 14)
- peer review (p. 14)
- science (p. 11)
- SI (p. 14)
- theory (p. 11)

MAIN (Idea Science is a process based on inquiry that seeks to develop explanations.

- · Science is the study of nature and is rooted in observation and experimentation.
- · Pseudoscience is not based on standard scientific research; it does not deal with testable questions, welcome critical review, or change its ideas when new discoveries are made.
- Scientists worldwide use SI.
- · Science and ethics affect issues in health, medicine, the environment, and technology.

Section 1.3 Methods of Science

- · control group (p. 19)
- constant (p. 19)
- data (p. 19)
- · dependent variable (p. 19)
- experiment (p. 18)
- · experimental group (p. 19)
- · hypothesis (p. 18)
- · independent variable (p. 19)
- · inference (p. 16)
- · observation (p. 16)
- · safety symbol (p. 21)
- scientific method (p. 16) · serendipity (p. 18)
- MAIN (Idea Biologists use specific methods when conducting research.
- · Observations are an orderly way of gathering information. Inferences are based on prior experiences.
- Controlled experiments involve a control group and an experimental
- An independent variable is the condition being tested, and the dependent variable results from the change to the independent variable.

FOLDABLES Summarize the law of conservation of matter, and explain how it applies to the physical and chemical changes that take place in substances during natural cycles.

Vocabulary

Key Concepts

Section 2.1 Organisms and Their Relationships

- · abiotic factor (p. 35)
- · biological community (p. 36)
- biome (p. 36)
- · biosphere (p. 34)
- · biotic factor (p. 35)
- · commensalism (p. 40)
- ecology (p. 32)
- · ecosystem (p. 36)
- habitat (p. 38)
- · mutualism (p. 39)
- niche (p. 38)
- parasitism (p. 40)
- population (p. 36)
- predation (p. 38)
- symbiosis (p. 39)

MAIN (dea Biotic and abiotic factors interact in complex ways in communities and ecosystems.

- Ecology is the branch of biology in which interrelationships between organisms and their environments are studied.
- Levels of organization in ecological studies include individual, population, biological community, ecosystem, biome, and biosphere.
- Abiotic and biotic factors shape an ecosystem and determine the communities that will be successful in it.
- Symbiosis is the close relationship that exists when two or more species live together.

Section 2.2 Flow of Energy in an Ecosystem

- autotroph (p. 41)
- biomass (p. 44)
- carnivore (p. 41)
- detritivore (p. 42)
- food chain (p. 43)
- food web (p. 43)
- herbivore (p. 41)
- · heterotroph (p. 41)
- omnivore (p. 42)
- · trophic level (p. 42)

MAIN (dea) Autotrophs capture energy, making it available for all members of a food web.

- Autotrophs capture energy from the Sun or use energy from certain chemical substances to make food.
- · Heterotrophs include herbivores, carnivores, omnivores, and detritivores.
- A trophic level is a step in a food chain or food web.
- Food chains, food webs, and ecological pyramids are models used to show how energy moves through ecosystems.

Section 2.3 Cycling of Matter

- · biogeochemical cycle (p. 45)
- · denitrification (p. 48)
- matter (p. 45)
- nitrogen fixation (p. 48)
- nutrient (p. 45)

MAIN (dea Essential nutrients are cycled through biogeochemical processes.

- Biogeochemical cycles include the exchange of important elements between the abiotic and biotic parts of an ecosystem.
- · The carbon and oxygen cycles are closely intertwined.
- Nitrogen gas is limited in its ability to enter biotic portions of the environment.
- · Phosphorus and carbon have short-term and long-term cycles.

FOLDABLES Research a natural disaster that occurred twenty or more years ago. Determine what the community looked like before the disaster and what the area looks like today. Draw a "then and now" picture.

Vocabulary

Key Concepts

Section 3.1 Community Ecology

- · climax community (p. 63)
- · community (p. 60)
- · ecological succession (p. 62)
- · limiting factor (p. 61)
- · primary succession (p. 62)
- · secondary succession (p. 63)
- tolerance (p. 61)

MAIN (Idea All living organisms are limited by factors in the environment.

- Limiting factors restrict the growth of a population within a community.
- Organisms have a range of tolerance for each limiting factor that they
 encounter.
- · Primary succession occurs on areas of exposed rock or bare sand (no soil).
- Communities progress until there is little change in the composition of species.
- Secondary succession occurs as a result of a disturbance in a mature community.

Section 3.2 Terrestrial Biomes

- · boreal forest (p. 68)
- climate (p. 66)
- desert (p. 70)
- · grassland (p. 70)
- latitude (p. 65)
- temperate forest (p. 69)
- · tropical rain forest (p. 72)
- tropical savanna (p. 71)
- tropical seasonal forest (p. 71)
- tundra (p. 68)
- weather (p. 65)
- woodland (p. 69)

MAIN (dea Ecosystems on land are grouped into biomes primarily based on the plant communities within them.

- Latitude affects terrestrial biomes according to the angle at which sunlight strikes Earth.
- Latitude, elevation, ocean currents, and other abiotic factors determine climate.
- · Two major abiotic factors define terrestrial biomes.
- Terrestrial biomes include tundra, boreal forests, temperate forests, temperate woodlands and shrublands, temperate grasslands, deserts, tropical savannas, tropical seasonal forests, and tropical rain forests.

Section 3.3 Aquatic Ecosystems

- abyssal zone (p. 81)
- · aphotic zone (p. 80)
- benthic zone (p. 80)
- estuary (p. 78)
- intertidal zone (p. 79)
- limnetic zone (p. 77)
- littoral zone (p. 76)
- photic zone (p. 80)
- plankton (p. 77)
- · profundal zone (p. 77)
- sediment (p. 75)
- · wetlands (p. 78)

MAIN (Idea Aquatic ecosystems are grouped based on abiotic factors such as water flow, depth, distance from shore, salinity, and latitude.

- Freshwater ecosystems include ponds, lakes, streams, rivers, and wetlands.
- Wetlands and estuaries are transitional aquatic ecosystems.
- Marine ecosystems are divided into zones that are classified according to abiotic factors.
- Estuaries and coral reefs are among the most diverse of all ecosystems.

FOLDABLES Research Find the population density of the countries of a continent. Make a color-coded map that shows the population density of each country.

Vocabulary

Section 4.1 Population Dynamics

- · carrying capacity (p. 98)
- · density-dependent factor (p. 95)
- · density-independent factor (p. 94)
- dispersion (p. 92)
- emigration (p. 97)
- immigration (p. 97)
- population density (p. 92)
- . population growth rate (p. 97)

Key Concepts

MAIN (Idea) Populations of species are described by density, spatial distribution, and growth rate.

- There are population characteristics that are common to all populations of organisms, including plants, animals, and bacteria.
- · Populations tend to be distributed randomly, uniformly, or in clumps.
- Populations tend to stabilize near the carrying capacity of their environment.
- Population limiting factors are either density-independent or density-dependent.

